Carbon-Nanofiber-Reinforced Syntactic Foams: Compressive Properties and Strain Rate Sensitivity
نویسندگان
چکیده
The current study is focused on exploring the possibility of reinforcing syntactic foams with carbon nanofibers (CNFs). Syntactic foams are hollow, particle-filled composites that are widely used in marine structures and are now finding applications in other modes of transportation due to their high stiffness-to-weight ratio. The compressive properties of syntactic foams reinforced with CNFs are characterized over the strain rate range of 10 4 to 3,000 s , which covers seven orders of magnitude. The results show that despite lower density with respect to neat epoxy, CNF/syntactic foams can have up to 7.3% and 15.5% higher quasi-static compressive strength and modulus, respectively, for the compositions that were characterized in the current study. In addition, these properties can be tailored over a wide range by means of hollow particle wall thickness and volume fraction, and CNF volume fraction. The compressive strength of CNF/syntactic foams is also shown to generally increase by up to a factor of 3.41 with increasing strain rate when quasi-static and high-strain-rate testing data are compared. Extensive microscopy of the CNF/syntactic foams is conducted to understand the failure and energy absorption mechanisms. Crack bridging by CNFs is observed in the specimens, which can delay final failure and increase the energy absorption capacity of the specimens. Deformation of CNFs is also noticed in the material microstructure. The deformation and failure mechanisms of nanofibers are related to the test strain rate and the structure of CNFs.
منابع مشابه
Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams
The present study investigates the mechanical performance of syntactic foams produced by means of the metal powder injection molding process having an Invar (FeNi36) matrix and including cenospheres as hollow particles at weight fractions (wt.%) of 5 and 10, respectively, corresponding to approximately 41.6 and 60.0 vol.% in relation to the metal content and at 0.6 g/cm³ hollow particle density...
متن کاملMechanical properties of CNT reinforced nano-cellular polymeric nanocomposite foams
Mechanics of CNT-reinforced nano-cellular PMMA nanocomposites are investigated using coarse-grained molecular dynamics simulations. Firstly, static uniaxial stretching of bulk PMMA polymer is simulated and the results are compared with literature. Then, nano-cellular foams with different relative densities are constructed and subjected to static uniaxial stretching and obtained stress-strain cu...
متن کاملThermal Expansion of Carbon Nanofiber-Reinforced Multiscale Polymer Composites
Improved dimensional stability of composites is desired in applications where they are exposed to varying temperature conditions. The current study aims at analyzing the effect of vapor-grown carbon nanofibers (CNFs) on the thermal expansion behavior of epoxy matrix composites and hollow particlefilled composites (syntactic foams). CNFs have a lower coefficient of thermal expansion (CTE) than e...
متن کاملDynamic and Thermal Properties of Aluminum Alloy A356/Silicon Carbide Hollow Particle Syntactic Foams
Aluminum alloy A356 matrix syntactic foams filled with SiC hollow particles (SiCHP) are studied in the present work. Two compositions of syntactic foams are studied for quasi-static and high strain rate compression. In addition, dynamic mechanical analysis is conducted to study the temperature dependent energy dissipation and damping capabilities of these materials. The thermal characterization...
متن کاملThermal Characterization of Plain and Carbon Nanotube reinforced Syntactic Foams
Composite materials fabricated using hollow microspheres are called syntactic foams. Particulate filler composites such as syntactic foams, consisting of glass microballoons and epoxy resin, are desirable for applications that require high compressive and impact strengths and low thermal conductivities. However, for heat dissipation applications, filler additions are required to increase the th...
متن کامل